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Symbols

appropriately dimensioned state-space realization of G(s, 5)

matrices relating state model of P(s) to uncertain parameters in
A matrix

transfer function of uncertain system

feedback control system

uncertain scalar gain factor reflected at input and output, respectively

number of first-order transfer function blocks in G(s, 5)

number of second-order transfer function blocks in G(s, 5)

index variable

nominal closed-loop plant transfer function matrix

nominal open-loop plant transfer function matrix (or interconnection

structure)

minimal number of uncertain parameters in A matrix

fictitious uncertain parameter input vector to P(s), p E R m

fictitious uncertain parameter output vector from P(s), q E R TM

order of highest cross term in AA, BA, CA, and DA, respectively

order of highest cross term in AA, BA, CA, and D A collectively

Laplace frequency variable

control input vector, u E R nu

vector of exogenous inputs (e.g., noise, disturbances, commands),
w E R nw

state vector, x E R nz

output measurement vector, y E R ny

vector of controlled variables (e.g., tracking error and control posi-

tion and rate), z E R nz

vector of real uncertain parameters, & E R m = R m1 + RmD

ith element of

diagonal uncertainty matrix with 5 along main diagonal, A E R TM ×m

uncertainty matrix associated with matrix A, B, C, and D,

respectively

uncertain variable
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real (or first order)
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Summary

In the design and analysis of robust control systems for uncertain plants, representing the

system transfer matrix in the form of what has come to be termed an '_M-A model" has become

widely accepted and applied in the robust control literature. The symbol M represents a transfer

function matrix M(s) of the nominal closed-loop system, and A represents an uncertainty

matrix acting on M(s). The nominal closed-loop system M(s) results from closing the feedback

control system K(s) around a nominal plant interconnection structure P(s). The uncertainty
can arise from various sources, such as structured uncertainty from parameter variations or

multiple unstructured uncertainties from unmodeled dynamics and other neglected phenomena.

In general, A is a block diagonal matrix, but for real parameter variations, A is a diagonal
matrix of real elements. Conceptually, the M-A structure can always be formed for any linear

interconnection of inputs, outputs, transfer functions, parameter variations, and perturbations.

However, very little of the currently available literature addresses computational methods for

obtaining this structure, and none of this literature (to the authors' knowledge) addresses a

general methodology for obtaining a minimal M-A model for a wide class of uncertainty,

where the term "minimal" refers to the dimension of tile A matrix. Since having a minimally

dimensioned A matrix would improve the efficiency of structured singular value (or multivariable

stability margin) computations, a method of obtaining a minimal M-A model would be useful.

Hence, a method of obtaining the interconnection system P(s) is required. This paper presents

(without proof) a generalized procedure for obtaining a minimal p_A structure for systems with
real parameter variations. With this model, the minimal M-A model can then be easily obtained

by closing the feedback loop. The procedure involves representing the system in a cascade-form

state-space realization, determining the minimal uncertainty matrix A, and constructing the

state-space representation of P(s). Three examples are presented to illustrate the procedure.

1. Introduction

Robust control theory for both analysis and design has been the subject of a vast amount

of research. (See refs. 1 through 35.) In particular, robust stability and performance have been
emphasized in much of this work, as, for example, in the development of H _c control theory.

(See refs. 10 through 15 and 19 through 23.) Moreover, the development of robust control system

design and analysis techniques for unstructured (refs. 1 through 9, 13, 19, and 21) as well as
structured (refs. 16 through 35) plant uncertainty continues to be the subject of much research-

particularly thc latter. Unstructured plant uncertainty arises from unmodeled dynamics (such

as actuator or engine dynamics) and other neglected phenomena (such as nonlinearities with

conic sector bounds). This uncertainty is called "unstructured" because it is represented as
a norm-bounded perturbation with no particular assumed structure. Plant uncertainty is

called "structured" when there is real parameter uncertainty in the plant model, or when

there are multiple unstructured uncertainties occurring at various points within the system

simultaneously. Plant parameter uncertainty can arise from modeling errors (which usually

result from assumptions and simplifications made during the modeling process and/or from the

unavailability of dynamic data on which the model is based) or from parameter variations that

occur during system operation.

Robust control design and analysis methods for systems with unstructured uncertainty
are accomplished via singular value techniques (refs. 1 through 9 and 21). For systems with

structured plant uncertainty, however, a technique which takes advantage of that structure, such

as the structured singular value (SSV) (refs. 16 through 27) or multivariable stability margin

(MSM) (refs. 28 through 33), should be used. In order to compute the SSV or MSM, it is required
that the system be represented in terms of an M-A model. The M represents a transfer function

matrix M(s) of the nominal closed-loop system, and A represents an uncertainty matrix acting



onM(s). ThesystemM(s) is formedby closingthefeedbacksystemK(s) around the nominal
open-loop plant interconnection structure P(s), as shown in figure 1.

W Z
y

M(s)

Figure 1. Block diagram of general M-A model.

For multiple unstructured uncertainties, A is a block diagonal matrix, and for real parameter

uncertainties, the A matrix is diagonal. As indicated in the literature (refs. 17, 18, 20, and 21),

this model can always be formed for any linear interconnection of inputs, outputs, transfer

functions, parameter variations, and perturbations. However, very little of the literature
discusses methods for obtaining an M-A model. While formulation of an M-ZX model for

unstructured uncertainties does not pose a major problem, forming an M-A model for real

parameter variations can be very difficult. In reference 29, De Gaston and Safonov present an

M-A model for a third-order transfer function with uncertainty in the location of its two real

nonzero poles and in its gain factor. Although the given M-A model is easily obtained for

this simple example, other examples do not yield such a straightforward result. A general state

model of M(s) for additive real perturbations in the system A matrix (where A is assumed to
be closed loop) is discussed in reference 34. Unfortunately, this model is not general enough

for many examples, since system uncertainty is restricted to the A matrix and the uncertainty

class is restricted to be linear. Morton and McAfoos (ref. 26) present a general method for

obtaining an M-_ model for linear (affine) real perturbations in the system matrices (A, B,

C, and D) of the open-loop plant state model. In this model, the interconnection matrix P(s)

is constructed first for separating the uncertainties from the nominal plant, and then M(s) is

formed by closing the feedback loop. The M-A model thus formed can be used in performing
robustness analysis of a previously determined control system. Alternatively, if the feedback

loop is not closed, p-synthesis techniques (refs. 19, 20, and 21) can be applied to the p_A model

for robust control system design of K(s). The result of Morton and McAfoos essentially reduces

to that of reference 34 when the perturbations occur only in the A matrix (and the A matrix of

ref. 34 is assumed to be open loop). An algorithm for easily computing M(s) based on the result
of Morton and McAfoos is presented in reference 35. Although this method of constructing an

M-A model is adequate for linear uncertainties, many realistic problems require a more general

class of uncertainties, since, for real problems, uncertainties can arise in a nonlinear functional

form (such as nth-order terms and cross terms). For these cases, it often becomes necessary to
have repeated uncertain parameters in the A matrix, as is discussed later. Since the M-A model

is a nonunique representation, models of various dimensions (due to the repeated parameters)

can be constructed depending on how the model is obtained. It is therefore desirable to obtain

one of minimal dimension so that the complexity of the SSV or MSM computations during

robust control system design or analysis can be minimized. However, none of the litorature (to

the authors' knowledge) addresses the issue of minimality.
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Thispaperpresentsamethodologyfor constructinga minimal p_A modelfor single-input,
single-output(SISO)systemswith realparametricmultilinear uncertainties,wherethe terms
"minimal" and "multilinear" aredefinedasfollows:

Definition: A p_A modelis minimal if the A matrix is of minimal dimension. It is

shown later that A is minimal when its dimension is as close to the num-

ber of independent uncertain parameters as possible, that is, when it con-

tains a minimal number of repeated uncertain parameters (if any).

Definition: A function is multilinear if the functional form is linear (affine) when

any variable is allowed to vary while the others remain fixed; for exam-

ple, f(a, b, c) = a + ab + bc + abe is a multilinear function.

The requirement that the p_A model be minimal provides a means of improving the efficiency

of the SSV and/or MSM computations during robust control system design or analysis. The

allowance of multilinear functions of the uncertain parameters provides a means of handling

certain nonlinear terms in the transfer function coefficients (and, hence, the system matrix

elements), namely, cross-product terms. In addition, nonlinear nth-order terms can be
approximated within the multilinear framework, although this representation is conservative.

The proposed procedure determines the minimal A matrix and the state-space form of P(s)

given the system transfer function in terms of the uncertain parameters, where any or all

the numerator and/or denominator coefficients can be multilinear functions of the uncertain

parameters except the leading denominator coefficient. It should be noted, however, that this

procedure is presented without formal proof. Moreover, the state-space form used in modeling

P(s) is an extension of the result of Morton and McAfoos for real parametric linear (affine)
uncertainties (ref. 26). An extension of this result to multiple-input, multiple-output (MIMO)

systems appears possible and is under study. The paper is divided into the following sections: a

formal statement of the problem to be solved is presented in section 2, followed by a discussion

of minimality considerations in section 3; the solution structure is presented in section 4,

and computational details of the solution are presented in section 5; finally, several examples

illustrating the solution are given next in section 6, followed by some concluding remarks in
section 7.

2. Problem Statement

Given the transfer function of an uncertain system G(s, 5) as a function of the real uncertain

parameters 5, find a minimal p-A model of the form depicted in figure 2 such that

1. The diagonal uncertainty matrix A is of minimal dimension

2. The model of the nominal open-loop plant P(s) is in state-space form

6(s,5)

il e(s)

Figure 2. Block diagram of general p-A model.
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The modelmusthandlemultilinearuncertaintyfunctionsin anyor all the transferfunction
coefficientsexceptthe leadingdenominatorcoefficient.In orderto constructa minimal P-_
model,the dimensionof the _ matrix must be minimized. Hence, factors which have been

found to affect the dimension of the p-A model are discussed next, followed by the approach

used in forming a solution to this problem.

3. Minimality Considerations

In constructing a P-_ model of an uncertain system, the A matrix can become unnecessarily

large due to repeated uncertain parameters on its main diagonal. It is therefore of interest to

examine the factors which can cause this repetition, so that the number of repeated uncertain

parameters can be minimized. A factor which can be shown to increase the size of the A

matrix is the particular state-space realization used in representing the system. To illustrate

this, consider the following simple examples:

Example 3.1: Consider the system

1 1

G(s)-- s2+(01+02) s+0102 (s+01)(s+02)

where

01 = 01o + 61 02 ----020 + 62

-1 _51 <_ 1 -1 _<62 < 1

and the system is represented ill state-space form as

[0 1] iv]A= _0102 (_01_02) B= C=[10]

This system has two uncertain real poles, 01 and 02. The terms 61 and 52 represent the
uncertain parameters associated with the uncertain poles. In block diagram form, this system

can be represented directly from the transfer equation

s2y = -(01 + 02)sY - 0102Y + u

= [--(01o + 020 ) -- (61 + 52) ] sy + (-010020 - 02061 -- 01o52 - 6162) y + u

as shown in sketch A.

-(01o + 02o)- (51 + 52) }_

-(010o20 + 020 _ + olo 52+ 4 52) I<

y

Sketch A

fl :lJ



Then the uncertain parameters can be separated out into the p_A model shown in sketch B.

Pl

rp
J

-(01o + 020)

-01o 020

i ql

_' (
I j_

E

q2

o_F;
L

y

P(s)

Sketch B

The A matrix associated with this model is A = diag [81,51,52, 52] , which is four-dimensional.

The nominal system P(s) can be represented as

[pl][ _] [__ =.-. 0 1 + + u-01o/92o -(01o+02o)] [:_1 [ 010- 0 _01 _01] P2p3 [_1

P4

[qll,0i]I1[i°°°q2 = x 1 + 0 0 0
q3 ]01o x2 0 0 0
q4 1 0 0

[Xl]y----[1 O] x2

[PxlP2

P3

P4

Example 3.2:

diagram in sketch C.
The system G(s) in example 3.1 can also be represented by the block

U

(s + 01) (s + 02)

Sketch C

Y_.._

v



where
02 = 020 + 52

-1<52<_1

and the state-space representation is given by

_:[-01_o_O]._[lo] _=,Ol,
An equivalent block-diagram realization for this system is given directly by the cascaded form
in sketch D.

p, p2[5

Y

Sketch D

An equivalent p_A model is given in sketch E.

A

Pl

P2

81

82

I

I

ql

jR

q2

P(s)

Sketch E

Y

where the A matrix is given by A _-- diag [51,62], which is two-dimensional, and a state-space

realization of the nominal plant P(s) is given by

[xX.'12] [ -01° _1] [P_] +[10]= 1 -020 ] [:12] +[01 0
u

ii lii



y = [0 1] x2

The p-A models obtained in examples 3.1 and 3.2 are very different, even though they

both represent the same system with two uncertain parameters. Obviously, the p-A model of

example 3.2 is minimal (A is two-dimensional) and that of example 3.1 is not minimal (A is

four-dimensional), since for minimality the dimension of A should be as close to the number
of independent uncertain parameters as possible. These examples therefore demonstrate the

effect the particular realization has in forming a p_A model. In particular, it appears that a
cascade realization is a desirable form for obtaining a minimal p_A model. Thus, a general

cascade-form realization is part of the approach taken in constructing a minimal p_A model

so that uncertain real poles and zeros can be cascaded whenever possible. A problem arises,

however, in that some transfer functions have a form which precludes cascading uncertain real

poles or zeros such as

bls 2 + b2s + b3

G(s,6) --- (s + 01)(s + 02)
G(s,5) = (s + 01)(s + 02)

s 2 + als + a2

where 01 and 02 are assumed to be uncertain (and hence a function of 6). Cascading the poles

and zeros for either case would result in improper transfer function blocks being realized. For
these cases, it is unavoidable for the minimal A matrix to have repeated uncertain parameters

on the main diagonal. However, for each inseparable pole or zero pair it is only necessary to

repeat one uncertain parameter. This issue is addressed in the proposed solution, and a minimal

p-A model for the first transfer function above is given as an example.

Another factor which affects the dimension of the p-A model is the form of the coefficiem ,n

the system transfer function. If any of the coefficients are nonlinear functions of the uncertain

parameters instead of multilinear functions (e.g., there are nth-order uncertain terms in any

of the coefficients), then extra dependent uncertain parameters must be defined in order to

represent these terms in a multilinear form. For example, 62 would be represented as 5162,
where 62 = 51, and both 51 and 52 would appear in the A matrix. Thus, for this case, it is

again necessary that the minimal A matrix contain repeated uncertain parameters on its main

diagonal. An example illustrating this situation is presented later.

These issues are addressed in the solution presented herein for constructing a minimal p-A

model. The approach taken in forming this solution is described in the next section.

4. Solution Structure

Based on the problem definition and the minimality considerations outlined previously,
several issues are addressed in forming a solution to the problem of constructing a minimal

p_A model given the transfer function of an uncertain system. First, a general cascade-form

realization is found which can be used to obtain a minimal p-A model. Second, the minimal

A matrix is determined for any uncertain system such that extra dependent parameters are

assigned to account for inseparable pairs of uncertain real poles or zeros as well as nonmultilinear

(e.g., squared) terms. (As stated previously, it should be noted that the representation of nth-
order terms in a multilinear form is a conservative approximation.) Third, a method of obtaining



a state-spacerealizationof P(s) for anyuncertainsystemis found. Therefore,the proposed
approachfor constructinga minimal p_A modelis givenasfollows:

1. Obtaina cascade-formrealizationof thesystemsothat the state-spaceuncertainmodelcan
bewritten as

± = Ax + Bu )

y = Cx + Du j_ (1)

where

A=Ao+A A B=Bo+B A }C = Co + C A D Do + D A (2)

The terms with the subscript o (Ao, Bo, Co, and Do) represent the nominal matrix

components, and the terms with the subscript A (AA, BA, CA, and DA) represent the
uncertain matrix components.

2. Determine the minimal uncertainty matrix A as described in the problem definition and

depicted in figure 2, where A is defined as follows:

A = diag [51,52, _3,''-, 5rn] = diag [5i, 5D] = diag [5] (3)

where

A E R mxm 61 E R mI 6D E RmD 6 E R TM

The vector of uncertain parameters is

6 = [(_1,52, (53,''., 6m]

the partition of 6 containing independent parameters is

61 = [61,52, 63,. • •, 5mr]

and the partition of 6 containing dependent parameters is

6D = [6mi+l, 5m1+2, 5mi+3,..., 6rod

8

where

?7/

rn I

rn D

Also

where

P

q

minimal number of uncertain parameters

number of independent parameters given in G(s, 5)

minimal number of dependent (or repeated) parameters

p = Aq (4)

uncertain parameters input to P(s), p E R m

uncertain variables output from P(s), q E R m

Thus, since m I is given and fixed, the minimal A matrix results when rn D (i.e., the number
of dependent (or repeated) parameters in the A matrix) is minimal (or zero, if possible).

!1IJ



[;]_rO xl Dqp
L Co J x + LDyp

3. Determine the state-space model of the nominal open-loop plant P(s) having the following
form:

oo][up]
where Bxp, Cqx, Dqp, Dqu, and Dyp are constant matrices. Thus, P(s) can also be written
in the equivalent shorthand notation defined as follows:

P(s) = [Pll(S)
[P21(s)

Pl:(s)l
P22(s) J

1
Ao Bxp Bo [

Cqx Dqp Dqu I
Co Dyp Do J

(6)

where

Pll(S) -- q(s) _ Cqx(SI- Ao)-lBxp +Dqp
p(s)

P12(s) _ y(s) _ Cqx(SI - Ao)-l Bo + Dqu
p(s)

(7)
q(s) _ Co(sI - Ao)-lBxp + DypP21(s)- u_

y(s) _ Co(sI - Ao)-lBo + Do
P22(s)- u(s)

and with the notation of equation (6), the individual transfer function matrices Pij(s) can
be expressed as

Pll(S) = L Cq_ IDqp J

[A°LB  l
P21(s) = LCol _pypJ

P12(s) = L cqx I DquJ

P22(s) [ A°_lCo lDoJ

This notation is used in this paper (and in the literature) to conveniently represent a

transfer function matrix in terms of the state-space matrices of the system realization.

The last term in equation (6) should not be viewed as a partitioned constant matrix

but as the partitioned transfer function matrices defined by equations (7) and (8). This

distinction is made in the notation through the use of solid (as opposed to dashed)

partitioning lines.

It should be noted that this model is an extension of the result of Morton and McAfoos

(ref. 26), where the Dqp matrix was required to be zero. In this paper, however, Dqp is
allowed to be nonzero in order to model the multilinear (cross-product) uncertain terms.

(s)

The results for constructing a minimal p_A model via this approach are presented in the
next section.

5. Computational Details of Solution

The proposed solution is presented in four parts. The results for obtaining a cascade-form

realization of the uncertain system are summarized first, followed by tile results for obtaining

9



a minimal A matrix and a state-space realization of P(s). Then, a summary of the overall

procedure is presented.

5.1. Cascade-Form Realization

Given the transfer function of an uncertain system in terms of its uncertain parameters

G(s, 5), it is desired to realize the system in a cascade form of first- and second-order subsystems•
Thus, if the transfer function is given in unfactored form, the numerator and denominator

polynomials must be factored into first- and second-order subsystems, where the second-order

terms are only used to represent complex conjugate and inseparable pole/zero pairs. The given

transfer function can then be represented as follows:

G(s, 5) = Ky(5) GC(S , 5) GR(S, 5) Ku(5) (9)

where Ku and Ky represent input and output gain terms, respectively, and G R and G C represent
the first-order and second-order transfer function components, respectively. Then

Cn(s, 5) = auk(s, 5) ank_l (s, 5)... an2(s, 5) Gnl (s, 5)

Gc(s, e) = Gce(s, 5) GCe_I (s, 5)... Gc2(s, 5) GC1 (s, 5)

(10)

(11)

_2i-1 s + 32i (12)
GRi (s, 5) = s + cq

and

k

e

b3i_2 s2 + b3i_lS + b3i

Gci(s , 6) = s2 + a2i-lS + a2i
(13)

number of first-order blocks

number of second-order blocks

Any or all these transfer function coefficients may be uncertain. The uncertainty may arise

from either the coefficient itself being uncertain or from the coefficient being a multilinear

function of one or more uncertain variables• Therefore, for either case, any of the coefficients

may be a function of 5. Furthermore, the uncertain variables may have either an additive,

e = eo + 5_, or multiplicative, e = _o(1 + 55), form.

The following cascade-form state-space realization of this system is proposed:

An 0 B u Ku "]

G(s,5)--- BcCR AC I BcDRK_ | (14)

KyDcCR KyCcIKyDcDRKu ]

where

AR=

AR 1

BR2CR 1

BR3DR2CR 1

BR 4DR 3DR 2CR 1

BRk_ I DRk_ 2 •,. DR2CR1

BRk DRk-1 " " "DR2 CR1

0

AR
BR 3_R 2

BR 4DR 3CR 2

BRk_IDRk_2 .. DRaCR 2

BRkDRk_ 1 ... DR3CR2

..• 0

• . • 0

• . . 0

• • . 0

. .. ARk_ 1

•.. BRk _Rk_ 1'"

0

0

0

0

0

AR k
(15)

10



BR=

BR I

BR2DR 1

BR 3DR 2DR I

BR4DR3DR2DR]

BRk_IDRk_ 2...DR2DRI

BRkDRk_ 1 ... DR2DR1

(16)

D R = [DRkDRk_I---DR2DR1 ] (18)

The AC, BC, CC, and D C matrices have the exact same form as equations (15) through (18),

except that the subscripts R and k are replaced by C and g, respectively. The submatrices are
defined from equations (12) and (13) as fo!lows:

AR/ = -ai BR, = 1

C R/ = fl2i - ai_2i-1 D Ri = _2i-1 f
where the terms a and fl are defined in equation (12), and

(19)

A :[0 }
CCj ---- [ (b3j - a2jb3j-2) (b3j-1 - a2j- lb3j-2) ] DCj b3j-2

(20)

where the terms a and b are defined in equation (13). The state-space realizations

{AR/, BR/, CR/, DR/}and {Acj , BCj , CCj , DCj} lead to the ith first-order and jth

second-order transfer matrices GR/(s, 5) and GCj(S,6), respectively, where i = 1, 2,..., k, and
j=l,2,...,g.

The resulting cascade-form realization of the uncertain system is therefore obtained from
equation (14) as

I A R 0]A= BcCR AC B= [ BRKu ][ BcDRKu J

C= [KyDcC R KyCc] D= [KyDcDRK u] } (21)

This model is a general cascade-form realization for any uncertain open-loop SISO transfer

function. The model does not, however, handle nonmonic denominator polynomials with

uncertain leading coefficients. This would result in fractional (i.e., rational) matrix elements
in the realization with uncertain parameters in the denominator of these elements. For real

uncertain poles or zeros, two factors determine whether the first-order (real) or second-order

(complex) block form should be used. The first is the nature of the uncertainty associated with

11



theseterms,andthesecondis theformof thetransferfunction.If therealpoleor zerolocations
are the uncertainparametersand the transferfunctionform allowsthesepolesor zerosto be
separatedout, then the realblock formshouldbeused.If the transferfunctionform doesnot
allow this separation,then the complexblockform must beused. Furthermore,if there is a
pair of uncertainpolesorzerosthat cannotbecascaded,thentheresultingminimumA matrix
will havea repeatedparameteron the main diagonalfor each inseparable pole or zero pair.

Alternatively, if the coefficients of the second-order polynomial associated with the real poles

are the uncertain parameters, then the complex block form should be used. These cases are

illustrated in section 6 of this paper. The formulation of the minimal A matrix is presented
next.

5.2. Minimal A Matrix

In formulating the minimal p_A model, the minimal A matrix must be determined first.

The minimal A matrix is defined as in equation (3) with

m = m I + m D (22)

where m I is the number of independent uncertain parameters and m D is the number of

dependent uncertain parameters that must be added. The independent uncertain parameters are
those defined in G(s, _). However, as discussed previously, the dependent uncertain parameters

are those independent parameters that must be repeated due to nonmultilinear terms in the

transfer function coefficients and/or pairs of uncertain real poles or zeros that cannot be

cascaded. Thus, for A to be minimal, m D (the dimension of _D) should be minimized. It
can be shown that if the system transfer function is formed from a given minimal p_A model

of an uncertain system, the coefficients of the numerator and denominator polynomials will be

multilinear functions of the uncertain parameters. Unfortunately, the converse is not generally

true because of the dependence of the p_A model oil the realization used for the plant. However,

if the general cascade-form realization posed in this paper is used, the multilinear form of the
transfer function coefficients can be used to establish that m = m I (i.e., m D = 0) unless there

are real uncertain pairs of poles or zeros that cannot be cascaded. Furthermore, it can be shown
that if the coefficients of all the factors of the numerator and denominator polynomials are

multilinear functions, then the coefficients of the expanded polynomials will also be multilinear.

However, if there are nonmultilinear uncertain terms in the transfer function, then dependent

parameters must be defined (and included in A) to represent the nonmultilinear term in a
multilinear form. Moreover, if the nonmultilinear term is of the form _n, then n - 1 dependent

parameters must be defined. If there are pairs of uncertain real poles or zeros that cannot
be cascaded, then one additional dependent parameter must be added for each pair, and the

dependent parameter can be either of the uncertain real parameters in the pair. Therefore, the

number m, as determined by these rules, is the minimal dimension of the A matrix for the

uncertainty class considered in this paper. Once this minimal dimension is determined, the A
matrix can be defined as a diagonal matrix, as in equation (3), with the specified uncertain

parameters on the main diagonal. Examples which illustrate these cases are presented later in
section 6.

5.3. State-Space Realization of P(s)

Once the cascade-form realization has been determined, the system can be modeled as in

equations (1) and (2), where the elements of A A, B A, C A, and D A are known functions of

the uncertain parameters. Since any nonmultilinear terms have been redefined in a multilinear
form when the minimal A matrix is determined, these matrices are multilinear functions of

the parameters. In order to obtain a state-space model for P(s) as defined in equations (5),

12
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expressions for these uncertainty matrices must be determined in terms of the matrices Bxp,

Cqx, Dqp, Dqu, and Dyp from the model. With equations (4) and (5), these expressions can
be determined as follows:

A A=Bxp A (I-Dqp A)-lCqx = Bxp([- ADqp) -1 A Cqx I

I

B A Bxp A (I Dqp A)-lDqu = Bxp(I A Dqp) -1 _ Dqu

CA = Dyp A (I Dqp A)-lCqx = Dyp(I A Dqp) -1 _ Cqx

DA = Dyp A (I Dqp _)-lDqu = Dyp(I _ Dqp) -1 A Dqu

(23)

The inverse term makes computation of Dqp very difficult. Furthermore, the matrix inversion
can cause AA, BA, CA, and DA to have fractional (i.e., rational) elements with uncertain

parameters in the denominator, which is not allowed in the uncertainty class being considered.

Thus, it is desirable to represent this factor in terms of its Neumann expansion (ref. 36):

(I- A Dqp) -1 = I + A Dqp + (A Dqp) 2 + (A Dqp) 3 +... (24)

where the latter form in equations (23) has been assumed. Then equations (23) can be rewritten
as

A A = Bxp A Cqx

B A = Bxp _ Dqu

CA Dyp A Cqx

D A Dyp A Dqu

+ Bxp {A

+ Bxp {A

+ Dyp {A

+ Dyp {A

Dqp + (A Dqp) 2 + (A Dqp) 3 +...} A Cqx

Dqp+(A Dqp) 2+(ADqp) 3+ .} A Dqu

Dqp+(A Dqp) 2+(A Dqp) 3+ .}A Cqx

Dqp+(A Dqp) 2+(A Dqp) 3+ .}A Dqu

(25)

The second group of terms add in the cross terms of the multilinear uncertainty functions. Each

term in the series adds a higher order cross-product term. Since AA, BA, CA, and DA are
multilinear functions with a finite number of terms, the Dqp matrix can be defined to have a

special structure such that the infinite series of equation (24) can be replaced by a finite series.

Hence, convergence of the infinite series of equation (24) need not be considered. This special

structure for Dqp is given as follows:

(_ Dqp) r+l = 0 (26)

Thus,

(I- A Dqp) -1 = I + A Dqp + (A Dqp) 2 +... (A Dqp) r (27)

where r is the order of the highest cross term occurring in AA, BA, CA, and DA; that is,

r = max (OA, OB, Oc, OD) (28)

and OA, OB, OC, and 0 D represent the order of the highest order cross-product term in AA,

BA, C A, and DA, respectively. That is, for a general uncertain m × n matrix M,

0 M = max [order (mij); for all i = 1,2,...,m and j = 1,2,...,hi (29a)

13



wherethe order of eachmij is the order of its highest order cross-product term, and cross-
product term order is defined as

order (61 52 53...6i) = i - 1 (i = 1,2,...,m) (29b)

Thus, the maximum value of r is rmax = m - 1, where m is the dimension of the A matrix.

The required structure for Dqp to satisfy equations (26) and (27) is given as follows:

1. = 0 (i = 1, 2,..., m)

2. If dij 7&O, then for i = 1,2,...,m andj = 1,2,...,m:

a. dji = O

b. di®l,j® 1 = 0 or di@2,j® 2 = 0 or di®(m_l),j®(m_l) = 0

} (30)

where @ represents modulo rn addition (ref. 37) over the set {1, 2,..., m}; that is,

a®b={ a+b (a+b<_m)}a+b-m (a+b>m)

The desired equations can therefore be written as

A A = Bxp A Cqx + Bxp {A Dqp + (A Dqp) 2 +...(A Dqp) r} A Cqx

B A = Bxp A Dqu + Bxp {A Dqp + (A Dqp) 2 + (A Dqp) r} A Dqu

CA Dyp A Cqx+Dyp{A Dqp+(A Dqp)2+ (ADqp)r}A Cqx

DA=Dyp_Dqu+Dyp{ZXDqp+(A Dqp)2+ (A Dqp)r}A Dqu

where r is defined by equation (28). Since the AA, BA, CA, DA, and z_ matrices are known for

the given system, equations (31) can be used to determine Bxp, Cqx, Dqu, Dyp, and Dqp. Once
these matrices are obtained, the state-space model of P(s) is determined. Hence, a minimal
M-A model can also be formed.

A procedure which summarizes the necessary steps in obtaining a minimal p_A model using

these results is presented next.

for

5.4. Summary of Procedure

The following is a summary of the procedure implied by the preceding proposed approach

forming a minimal p_A model of a given uncertain system:

°

.

Obtain the system transfer function in factored form. The coefficients of each factor should

be a multilinear function of the uncertain parameters. If necessary, define new dependent

parameters to represent any nonmultilinear terms in a multilinear form.

Define the number of parameters in the A matrix, m, using equation (22). In so doing,

determine if any new parameters are required to model inseparable uncertain real pole or

zero pairs. If there are inseparable real pairs, either uncertain parameter in the pair must

be repeated.

14



3. Definethe minimal A matrix as in equation (3), using the independent parameters defined

in the given transfer function as well as those defined in steps 1 and 2.

4. Obtain a cascade-form realization for the system as a function of tile uncertain parameters.

5. Express the system matrices as in equations (2).

6. Determine the maximum order of cross-product terms r in AA, BA, CA, and D A
as defined by equations (28) and (29). Then AA, BA, CA, and D A have the form

represented in equations (31), where Dqp has the special structure of equation (30) required
by equation (26).

7. Express AA, BA, CA, and D A as

A A=AA0+AAI+AA2+...+AAr

BA = BA0 + BA1 + BA2 +... + BAr / (32)
CA CA 0 + CA 1 + CA 2 + ... -t- CA r

DA DA0 + DA1 + DA2 + ... + DAr

where the subscript i represents the cross terms of ith order in each uncertainty matrix.

8. The Bxp, Cqx, Dyp, and Dqu matrices are found with the expansion described in reference 26
for the uncertainty matrices having zero-order cross-product terms; that is, define

M __ = Mlfil + M2fi2 + ... + Mrn_rn (33)

where the M i matrices are appropriately partitioned. For the case of repeated parameters

(due to inseparable real poles or zeros, or due to nonmultilinear functions), the M i
matrix associated with the repeated parameter must be nonzero. These matrices can

be decomposed into the product of appropriately partitioned column and row matrices as
follows:

Mi .... MCi IgD2i (34)
MD1 i

where MBi forms the ith column of Bxp, MD1 i forms the ith column of Dyp, MCi forms
the ith row of Cqx, and MD2 i forms the ith row of Dqu. Thus,

Bxp= [MB 1 MB 2 ... MBm]

Dyp [MDn MD12 ... MD1 m]

(35)

9. Use the higher order cross terms of AA, BA, CA, and DA, as in equations (32), to

determine the elements of the Dqp matrix. An augmented matrix equation can be formed

15



with equations(31). Beginwith the first-orderterms and specifyas many elementsas
possible.Continuewith the second-orderterms,and proceeduntil all elementsof Dqp are
specified.CheckDqp to ensurethat the requiredspecialstructureof equation(30)and,
hence,equation(26)is satisfied.

10. Formtheminimalp-A modelasgiveninequations(3), (5), and(6)anddepictedin figure2.
If the M-A modelis desired,the feedbackcontrolsystemK(s) can be closed as discussed

previously.

It should be noted that the matrices MBi, MCi, MD1 i, and MD2i, obtained in decomposing

the M i matrices in equation (34), are not necessarily unique. A method of formalizing this
decomposition for computer implementation is not addressed in this paper. However, an

algorithm is presented in reference 35 which accomplishes this decomposition as an extension
to reference 36. Some examples are given in the next section to illustrate these results.

6. Examples

The following examples illustrate the proposed procedure presented in section 5.4 for the

various cases discussed in the preceding sections.

Example 6.1: This example illustrates the construction of a minimal p_A model
for an uncertain system whose transfer function contains an uncertain coefficient which is

a multilinear function of the uncertain parameters as well as a coefficient which is a

nonmultilinear function of an uncertain parameter:

1

G(s, 5) = s2 + 2¢ws + _2

where

This is a second-order system with uncertain complex poles. The uncertainty appears in the

damping and frequency characteristics of the complex poles. The procedure in section 5.4 is
used to determine a minimal p_A model as follows:

1. As given, G(s, 5) is in factored form. However, the constant coefficient w 2 is not a multilinear

function of the uncertain parameters. Substituting for a_ in the above transfer function
therefore yields the problematic term 52. In order to represent this equation in multilinear

form, the following dependent variable is defined:

53 = 6w

so that

52 = 5w53

2. There are two independent parameters, 5w and 5(, and one dependent parameter, 53, due
to the nonmultilinear term. Thus, from equation (22),

rn=rni + mD = 2 + l =3

16
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3. The minimal A matrix can be defined as follows:

A = diag[_;, _, 53]

although ordering of the uncertain parameters in A is arbitrary.

4. The cascade realization using equations (13) and (20) is determined to be

A = -w 2 -2_w B -=

_=[_0] D--[0]
Thus, it can be seen that for this example, the uncertain parameters occur only in the A

matrix.

5. Separate the nominal and uncertain parts of the system matrices as in equation (2):

[ 1]A = Ao + AA = _02 ° -2_o_o

o_-_o+_:[o]+[o]

0+ (-2Wo6w + 5w53) o ]-2(_o6_ + ¢o_,. + 6_G)

6. Find the maximum cross-term order, r:

0 A = order (_w63) = order (6_6_) = 1

0 B = 0 C = 0 D = 0

r = max (1,0,0,0) = 1 _ r = 1

7. Expand AA as in equations (32):

[ 0AA=AA0+AAI= -2Wo6_ o ][o-2(_o,_ + ¢o6_) + 6J3

8. Find Bxp, Cqx, Dyp, and Dqu by using equations (33)-(35):

M z

I

A_.o_'__S__o
I

CAO I DAO-

= MI_ ¢ + M2_w + M363

17



where

M 1=

M 2=

M 3 =

00i]0 -2Wo

0 0

oo-2Wo 0

0 0

0 0 0]

o o l-OJ

It is noted that M 2 and M 3 are tile coefficient matrices associated with the repeated parameter
5_. As indicated in the procedure, neither of these matrices can be a null matrix. Thus, the

nonzero elements of the coefficient matrix associated with 5w have been split columnwise to

form M 2 and M 3.

Note: This is equivalent to reassigning the repeated parameters in AA0 , BA0 ,

CA0 , and DA0 , to be columnwise independent prior to determining the
M i matrices. For this example, the reassignment can be accomplished as
follows:

[ 0 0 ]AA0 = - 2_o5_ - 2(Wo5_ + _o53 )

in order to be consistent with the M 2 and g 3 matrices determined
above.

Then

0.Jo 0]

0]

18
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Thus

[:oo] [ ]Bxp= -2 -2 Dyp= 0 0 0

[o°Cqx = 0 Dqu =

_o

9. Find Dqp by using equations (31) and (32). Since r = 1 for this example, equations (31) can
be written as

AA1 = Bxp[A Dqp] A Cqx

BA1 = Bxp[A Dqp] A Dqu

CA1 = Dyp[A Dqp] A Cqx

DA1 = Dyp[A Dqp] A Dqu

These equations can be combined into an augmented matrix equation as follows:

I

I

CA1 1 DA1

Substituting into this equation for AA1 , BA1 , CA1 , DA1 , Bxp, Dyp, Cqx, Dqu, and A

and solving for Dqp yields

D qp -= oo!]o
-1

o

which is consistent with the special structure required by equation (30). To see this, consider

equation (30). As required by condition 1, dll = 0, d22 = 0, and d33 = 0. Now consider

condition 2. First, d21 # 0 requires that d12 = 0 and that d32 = 0 or d13 = 0. Since d12 = 0

and d13 = 0, this condition is satisfied. Similarly, d32 # 0 requires that d23 = 0 and that

d13 = 0 or d21 = 0. Since d23 = 0 and d13 = 0, the condition is satisfied. Hence, the special

structure of equation (30) is satisfied.

10. The minimal p-A model as shown in figure 2 can now be constructed by using equations (3),

(5), and (6). The realization of P(s) for the resulting model can be depicted as follows:

[::][0o_ 1o o]i0 o _02]
P3

[ql}[0 1q2 Wo 0 Xl +

q3 0 _o x2

Ix1]y--[1 0] x2

oo [pl]0 P2

0 _ P3
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The A matrix is given by

A = diag [6_, 6w, 6w]

Example 6.2: This example illustrates the construction of a minimal p-A model for an

uncertain system whose transfer function contains an inseparable uncertain real pole pair:

bl s2 + b2s + b3

G(s,6) = (s + 81)(s + 82)

where

bl=blo+Sbl b2 =b2o+Sb2 b3 = b3o + 5b3

01 = 01o + 501 82=82o+602

1. Since the numerator is second order with uncertain coefficients, the uncertain real poles

in the denominator cannot be separated into the real cascade form. The denominator must

therefore be expanded, and the second-order (complex) block must be used in the realization;
that is,

bl s2 + b2s + b3

G(s, 5) = s2 + (81 + 82)s + 0182

2. There are five independent uncertain parameters in this system which must all appear in the

A matrix, namely,

bl, b2, b3, 01, and 02

In addition, since 81 and 82 are an inseparable pole pair, either 81 or 82 must be repeated

in the A matrix. (It can be shown that if 501 or 502 is not repeated, the Dqp matrix will
not have the required structure of equation (30) and the higher order cross terms will not

be modeled correctly.) Thus, from equation (22)

m=5+l =6

3. The A matrix can be defined as

A = diag [601, 52, 502, 5bl, 5b2, 5b3]

where

52 =501

4. The cascade realization can be constructed by using equations (13) and (20) and is given as
follows:

[0 1] .[0]A= _8182 _(81+02 )

C= [(b3-OlO2bl) (b2-(81+82)bl)] D= [bl]

For this example, the uncertain parameters occur in the A, C, and D matrices.

5. These system matrices can be expanded as in equations (2) to yield:

2O
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[ 0 1 ]Ao = _010020 _(01 o+02o)

[ (b3o - Olo02oblo) b2 - (Olo +02o)blo ]Co
t. J

[ o o ]AA = _ (020601 + 010602 + 601602 ) _(601 + 602)

.o_-
oo:[blo]

where

CA 11 = 8b3 - 02oblo5@1 - 01oblo602 - 01o02o6bl - blo6O1602 - 01o502661 - 0206016bl - 6016028bl

CA12 = 5b2 - blo601 - blo602 - (01o + 02o)6bl - 6016bl - 6026bl

6. Find the maximum cross-term order r using equations (28) and (29):

0 A = order (601602) = 1 0 B = order (0) = 0

0 C ----order (5015025bl) = 2 0 D = order (Sbl) = 0

r = max (i,0, 2,0) = 2 => r = 2

7. Expand AA, BA, CA, and D A as in equations (32):

where

A A =AA0+AA1 +AA2

CA = CA0 + CA1 + CA2

[ 0AA0 = _(02o601 + 010602)

AA1 = _601602

B A = BA0 + BA1 +BA2

D A --- DA0 + DA1 + DA2

CAO = [{ab3 - 02oblo601 - 01oblo602 - 01o02o6bl} {6b2 - blo601 - blo602 - (01o + 020) 6bl}]

CA1 = [-- (blo601602 + 02o6016bl + Olo602abl)

CA2 = [-601(502_5bl 0]

- (6016bl + aO26bl)]

DA0 = [Sbl] DA1 = [0] DA2 = [0]
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8. Solve for Bxp, Cqx, Dyp, and Dqu using equations (33)-(35):

M = M1501 + M252 + M3502 + M45bl + M55b2 + M65b3

where

M 1 -

0 0

-020 0

-02oblo 0
i]:

M4=

[ioM2= .v_i o/= OllO
blo l--oJ o '

M3=
,]0 0 0

-0_o_14_0j
-Oloblo -bl o l oJ

0

-1

-blo

[Olo1]o]

0 0

0 0

-010020 -(01o-t-02o)

0

0

--1
010020

]0 0 ! 0

_ =/°--°-J--°/=_o_ o _o
ko 1 oJ I

[°] 1[ooo1o [ioo_--/o_o__,,__o/:___
L1 o[oj 1

It is noted that M 1 and M 2 are associated with the repeated parameter 501 in A. As
discussed in example 6.1, neither M 1 nor M 2 can be a null matrix. Thus, as in example 6.1,

M1 and M 2 were formed by splitting up the columns of the coefficient matrix associated

with 501. (It can be shown that if M 1 and M 2 are not both required to be nonzero, Dqp
will not have the required structure, and hence the higher order cross-product terms will not

be modeled correctly.)

Note: As mentioned in the previous example, this is equivalent to reassigning the repeated

parameters in AA0 , BA0, CA0, and DA0 to be columnwise independent prior to

determining the M i matrices. For this example, the reassignment can be accomplished
as follows:
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[ 0 0 ]AA0= _(02o501+81o502 ) _(62+502)

CA0 = [{6b3 - 02oblo501 - 01oblo502 - 01o02o5bl} {5b2 - blo52 - blo_02 - (81o + 020)5bl }]

in order to be consistent with the M 1 and M 2 matrices determined above.

Thus, based on the above, the following results are obtained:

Bxp --_

Cqx

0 o 000 ]- - - 0 0

020 0

0 1

01o 1

010020 (81o + 020)

0 1

1 0

Dyp= [-blo -blo -blo

Dqu =

-111]

9. The higher order cross terms are used as in equations (31) and (32) for r = 2 to determine

Dqp as follows:

AA1 + AA2 = Bxp [A Dqp + (Zk

BA1 + BA2 = Bxp [A Dqp + (A

CA1 + CA2 = Dyp [A Dqp + (&

DA1 + DA2 = Dyp [A Dqp + (A

Dqp) 2] /% Cqx

Dqp) 2] 2k Dqu

Dqp) 2] A Cqx

Dqp) 2] A Dqu

Substituting for these known matrices and solving for Dqp yields the following result:

Dqp =

0 0 0 0 0 0

0 0 0 0 0 0

1
o o o o o

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

which satisfies the required structure of equation (30).
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10. Thus, from equations (3), (5), and (6), the following p-A model can be formed as depicted

in figure 2 where the state-space form of P(s) is given by

x:[O , ] [ooooo0] [o]_01o02 ° _(01 ° + 020) x + -1 --1 --1 0 0 0 p + u

q

02o 0

0 1

01o 1

010020 01o + 020

0 1

1 0

x÷

0 0

0 0

0 u÷
-1 1

0 0
1

,.0 0

y = [b3o - 01o01oblo

+[-blo - blo

and the z_ matrix is given by:

= diag [501, 501,A
[

b2o - (01o-t-01o)

- blo - 1 1

0 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

blot x + [51o]u

1]p

502, 5bl, 6b2, 6b3]

0

0

0
P

Example 6.3: This example illustrates the construction of a minimal P-& model for an

uncertain system which has many independent uncertain parameters:

a(_,5) =
(91 s -4-_2)(f13 s + 94) @182 "1"b2s ÷ b3)

(s + al)(S + a2)(s 2 + als +a2)

where

a 1 = alo ,1, 5al a 2 = a2o .1.5a2 al = alo + 5cd a2 = a2o + 5a2

,_1= 91o+ 5_1 & = &o + 592 & = &o + 5_3 _4 = 940+ _4
bl = blo + 5bl b2 = b2o + 562 b3 = b3o + 563

1. The given transfer function is in correct form, all coefficients are multilinear, and all pole-zero

pairs can be cascaded.

2. This system has 11 independent uncertain parameters. Since there are no nonmultilinear

terms in the transfer function coefficients and no inseparable real uncertain pole or zero pairs,

no dependent parameters need to be defined. Thus, rn can be defined with equation (22) as
follows:

rn = m 1.1. m D -11+ O = ll :=_rn = ll

3. The minimal A matrix can be defined as

A = diag [5ol, 5o2, 6al , 5a2, 5ill, 6fl2, @3, 5fl4, 5bl, 5b2, 5b3]

4. The cascade-form realization of this example is determined as follows:

G C =
bl s2 ,1,b2s÷b 3

s 2 + als .1. a 2 aR GR,an_ L -;¥U ] L -;7_-_ J
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The realization of G C is determined from equations (13) and (20) for t?= 1:

_[0 1] ._=[01-a 2 --a I

and the realization of G R is determined from equations (12) and (15)-(19) for k = 2:

[ Ol 1] oR=I,]AR= /32-alDl -a2 D1

CR= [/_3(/32-c_1/31) _4-(_2_3] DR= [_3_1]

Then the cascade realization is given by equations (14) and (21) for unity gains at the input

and output:

[A_ 0] B_[B_1A = BcCR AC BcDR

Thus

t

C

--_I 0 0

_2- _I/_I -a2 0
0 0 0

0

0

1

--a 1

blZ3(Z2- _Z_) bl(_4- _2Z3) (b_- _2b_) (b2- a_b_)[ D
J

B

_1_3

[fll_33bl]

5-9. For this example, uncertainty arises in the A, B, C, and D matrices. The AA, BA, CA,

and D A matrices are fairly complicated for this example and are therefore not given. The

order of the highest cross-product term is 3, so that r = 3. Following the procedure outlined
in section 5, the results are determined in a straightforward manner to be

Sxp _- 000000000ilo 1 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0

k_lo_3o /330 1 1 f13o _3o 1 1 0 0
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-1 0 0 0 -alo 1 (fl2o- alofllo) 0 fl3o (fl2o - alofllo) 0 01

0 -_1 0 01 0 0 -a2o 1 (f14o - a2of13o) 0
0 v 0 - 0 0 0 0 -a2o 0

0 0 1 0 0 0 0 0 -alo 1

DTu= [0 0 0 0 1 0 fllo 0 fllofl3o 0 0]

Dqp =

0 0 0 0 0 0 0 0 0 0 0-

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

fllo 1 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

fllofl3of13o 1 l f13o f13o 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

10. Equations (5) and (6) can now be used to obtain the state-space model of P(s) and the A

matrix determined as step 3 of this example. This yields the desired p_A model as depicted

in figure 2.

These examples illustrate the proposed procedure for forming a minimal P-zk model of an

uncertain system. Although all the steps involved in obtaining these results have not been

included (particularly in example 6.3), the stated results should provide a guide in performing

the steps of the proposed procedure. It should be noted that, for ease of hand computation,

examples 6.2 and 6.3 included only the simplistic (and less realistic) case in which the coefficients
themselves are the uncertain parameters. However, it is emphasized that, as illustrated in

example 6.1, the proposed procedure does handle the more realistic case in which the uncertain

transfer function coefficients are multilinear functions of the uncertain parameters.

7. Concluding Remarks

A proposed procedure is presented for forming a P-z_ model of an uncertain system which
appears to be of minimal dimension, given its transfer function in terms of the uncertain

parameters. The uncertainty class considered in this paper allows the transfer function

coefficients to be multilinear functions of the uncertain parameters, and the uncertainties may

arise in any or all of the A, B, C, and D matrices of the system model. Although no proofs are

presented regarding minimaIity, the resulting models appear to be minimal in dimension for all

examples worked thus far. Moreover, even if some counterexample exists for which the resulting
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p-A modelisnot minimal,the outlinedproceduredoesprovidea meansof handlingthe more
realisticuncertaintyclasswhichincludesmultilinearfunctionsof theuncertainparameters.This
procedureinvolvesrealizingthe systemin a cascadeform, determiningthe minimal A matrix

of uncertain parameters, and obtaining a state-space model for the nominal open-loop system

P(s). As stated previously, the minimal M-A model can then be easily obtained by closing

the feedback loop. Three examples were given to illustrate the proposed procedure. The first

example had uncertainty in the A matrix only and illustrated how this method handles uncertain

system transfer functions having coefficients that are multilinear functions of the uncertain

parameters as well as coefficients that are nonmultilinear functions of the uncertain parameters,

for which a repeated uncertain parameter had to be used. This example is representative of

typical problems that can arise in the mathematical modeling of realistic dynamic systems.

The second example had uncertain parameters arising in the A, C, and D matrices only. This

example illustrated the formulation of a minimal P-A model for a system with inseparable real

uncertain poles, and also involved repeating an uncertain parameter in the A matrix. The third
example had 11 independent uncertain parameters, which arose in the A, B, C, and D matrices

of the system realization. This example was included to demonstrate this method for a large

number of uncertain parameters which occur in all the system matrices. Also, for this example

none of the uncertain parameters had to be repeated. Thus, the minimal _, matrix contained

only the independent uncertain parameters given in the problem.

Further work on the proposed procedure could include systems having a nonmonic character-

istic polynomial with an uncertain leading coefficient, as well as systems having an inner feedback

loop which may or may not have uncertainties. The former case might require extending the un-

certainty class to include rational expressions containing multilinear functions of the uncertain

parameters in the numerator and denominator, and the latter case might require a modification
in the formulation of the cascade realization. Although the procedure presented in this paper is

for single-input, single-output systems, an extension to multiple-input, multiple-output systems

appears possible and should primarily involve modifying the cascade-form realization. Other

areas of future work include development of a means of proving the minimality of a given P-A

model, development of a proof that the above procedure yields a minimal P-A model, and

development of a method of reducing a nonminimal P-A model to a minimal form.

NASA Langley Research Center
Hampton, VA 23665-5225
May 10, 1991
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